研究
我想理解人类的感知机理,并构建更好的生成模型和具有类人推理能力的机器。
Brain Mapping with Dense Features: Grounding Cortical Semantic Selectivity in Natural Images With Vision Transformers
Andrew F. Luo , Jacob Yeung, Rushikesh Zawar, Shaurya Dewan, Margaret M. Henderson , Leila Wehbe* , Michael J. Tarr*
* Co-corresponding authors
Arxiv, 2024 (in submission)
arxiv
page /
bibtex
We propose an efficient gradient-free distillation module capable of extraction high quality dense CLIP embeddings, and utilize these embeddings to understand semantic selectivity in the visual cortex.
Disentangled Acoustic Fields For Multimodal Physical Scene Understanding
Jie Yin, Andrew F. Luo , Yilun Du , Anoop Cherian , Tim K Marks , Jonathan Le Roux , Chuang Gan
IROS 2024
arxiv
page /
bibtex
We investigate the problem of visual-acoustic navigation conditioned on a continuous acoustic field representation of audio.
DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
Shaurya Dewan, Rushikesh Zawar, Prakanshul Saxena, Yingshan Chang, Andrew F. Luo , Yonatan Bisk
NeurIPS 2024
arxiv
page /
bibtex
We leverage ideas from information theory to understand the contributions of individual text tokens and their interactions when generating images.
BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity
Andrew F. Luo , Margaret M. Henderson , Michael J. Tarr , Leila Wehbe
ICLR 2024
arxiv
page /
bibtex
We propose a way to leverage contrastive image-language models (CLIP) and fine-tuned language models to generate natural language descriptions of voxel-wise selectivity in the higher order visual areas.
Brain Diffusion for Visual Exploration: Cortical Discovery using Large Scale Generative Models
Andrew F. Luo , Margaret M. Henderson , Leila Wehbe* , Michael J. Tarr*
* Co-corresponding authors
NeurIPS 2023 oral , (top 0.7% of all submissions)
project
page /
bibtex /
code
We propose a way to generate images that activate regions of the brain by leveraging natural image priors from Diffusion models.
Neural Selectivity for Real-World Object Size In Natural Images
Andrew F. Luo , Leila Wehbe , Michael J. Tarr , Margaret M. Henderson
BioRxiv, 2023 (in submission)
bioRxiv page /
bibtex
We examine the selectivity of the brain to real-world size in complex natural images.
Learning Neural Acoustic Fields
Andrew F. Luo , Yilun Du , Michael J. Tarr , Joshua B. Tenenbaum , Antonio Torralba , Chuang Gan
NeurIPS 2022 (Summer intership at IBM)
project
page /
bibtex /
code
We propose a learnable and compact implicit encoding for acoustic impulse responses. We find that our NAFs can achieve state-of-the-art performance at a tiny size footprint.
Prototype memory and attention mechanisms for few shot image generation
Tianqin Li* , Zijie Li* , Andrew F. Luo , Harold Rockwell, Amir Barati Farimani , Tai Sing Lee
ICLR 2022
bibtex /
code
We show that having a prototype memory with attention mechanisms can improve image synthesis quality, and learn interpretable visual concept clusters.
SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface Discriminators
Andrew F. Luo , Tianqin Li , Wen-Hao Zhang , Tai Sing Lee
ICCV 2021
arxiv page /
bibtex /
code
We propose a surface based discriminator for implicit shape generation. Our discriminator uses differentiable ray-casting and marching cubes.
End-to-End Optimization of Scene Layout
Andrew F. Luo , Zhoutong Zhang , Jiajun Wu , Joshua B. Tenenbaum
CVPR 2020 oral
project page /
bibtex /
code
We propose contrained scene synthesis using graph neural networks, we show that generated scenes can be refined using differentiable rendering.
Learning to Infer and Execute 3D Shape Programs
Yonglong Tian , Andrew F. Luo , Xingyuan Sun , Kevin Ellis , William T. Freeman , Joshua B. Tenenbaum , Jiajun Wu
ICLR 2019
project
page /
bibtex /
code
We propose a learnable decomposition of 3D shapes into symbolic programs that can be executed.